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Canonical solution of the state labelling problem for 
SU( n) =I SO( n)  and Littlewood’s branching rule: 
11. Use of modification rules 

C Quesnet 
Service de Physique Thtorique et Mathtmatique CP 229, Universitt Libre de Bruxelles, 
Bd du Triomphe, B 1050 Brussels, Belgium 

Received 10 June 1983 

Abstract. In the first paper in the present series, it was shown that when d [ i n ] ,  the 
internal state labelling problem for the d-row irreducible representations of SU( n ) ,  when 
reduced with respect to SO(n) ,  amounts to the external state labelling problem for U(d). 
In this paper, this result is extended to the d > [ i n ]  case, where Littlewood’s branching 
rule for U(n) 3 O(n) has to be supplemented with Newell’s modification rules. The explicit 
solution of the state labelling problem for ( U +  1)-row irreducible representations of both 
SU(2u+1) and SU(2v) is given and is shown to reflect the operation of Littlewood’s 
modified branching rule in a direct way. The generalisation to higher d values is then 
outlined. 

1. Introduction 

The purpose of this series of papers is to present a new solution of the state labelling 
problem for the d-row irreducible representations (irreps) of SU( n), when reduced 
with respect to SO(n). This solution, which is not restricted to small values of n or 
d, reflects in a direct way the operation of Littlewood’s branching rule (1950) for the 
chain U( n) 2 O( n). Its derivation makes use of the complementarity relationship 
between the latter and the chain Sp(2d, R) 3 U( d) for d-row irreps of U( n) (Moshinsky 
1963, Moshinsky and Quesne 1970, 1971). 

The first paper in this series (henceforth referred to as I and whose equations will 
be subsequently quoted by their number preceded by I) was devoted to the general 
formulation of the method (Deenen and Quesne 1983). For such purposes, only irreps 
of U(n) with no more than v =[in] rows were considered, thereby avoiding the 
difficulties involved in the conversion of non-standard symbols of O( n) into standard 
ones. The present paper removes this limitation and deals with the case where d > v. 
Littlewood’s branching rule for U( n) 2 O( n) must then be supplemented with Newell’s 
modification rules (1951). The present paper’s purpose is to show that when d >  v, 
the state labelling problem proposed solution is directly connected with Littlewood’s 
modified branching rule. 

In § 2, the state labelling problems for the complementary chains U( n) 2 O( n) and 
Sp(2d, R) 2 U(d) are discussed in the case where d > v. The construction of highest 
weight states (HWS) of equivalent O(n) irreps is reviewed in 0 3. In §§ 4 and 5 ,  the 
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particular cases of ( v + 1) -row irreps of U( 2 v + 1) and U( 2 U) are respectively analysed 
in detail. Finally in § 6, the generalisation to higher d values is outlined. 

2. The state labelling problems for U(n) = O(n) and Sp(24 R )  2 U(d) when d > v 

As mentioned in I, the discussion of the state labelling problem for SU(n) 2 SO(n) 
reduces to the same discussion for either complementary group chain 

Both pairs of groups U(n),  U(d) and O(n) ,  Sp(2d, R )  are complementary (Moshinsky 
and Quesne 1970) within the irrep ( ( 4 ) ” )  or ( ( t )”” - ’& of a larger group Sp(2dn, R )  
(Moshinsky 1963, Moshinsky and Quesne 1971). Presently, we are interested in d-row 
irrepsofU(n),suchthat v < d < n  and n = 2 v o r 2 v + l .  Inequations(2.1)and(2.2), 
the quantum numbers characterising its irreps are indicated below each group. 

The reduction U( n)  2 O( n)  is governed by Littlewood’s branching rule (1950), 
provided the latter partitions ( A I A z .  . . A d )  containing more than v parts are converted 
into partitions containing no more than v parts by using Newell’s modification rules 
(1951). Since Littlewood’s modified branching rule rapidly becomes very compli- 
cated when d - v increases, we shall hereafter only quote it for the case corresponding 
to the smallest d value, namely d = v + 1. When n = 2v + 1, it can be written as 

and when n =2v  as 
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where g,,, is the multiplicity of the irrep T of U(n)  in the product representation 
p X (T, and h i , .  . . , hi+,,  are even integers. In equation (2.3), the prime (double prime) 
over the summation symbol over A l ,  . . . , A ,  means that these numbers are restricted 
to those values such that hl  + . . . + h,+l - ( A l  + . . . + A , )  is even (odd). 

The modified branching rule differs in two respects from the standard one. Firstly 
it contains some additional positive terms, respectively the second and the third ones 
in equations (2.3) and (2.4). Next it contains some negative terms which compensate 
part of the terms coming from the ordinary branching rule. Such is the last term in 
equation (2.4), while none of this kind is present in equation (2.3). It turns out that 
the only case where the modified branching rule does not contain any negative term 
is where d = v + 1 and n = 2 v + 1, consequently easing the solution of the state labelling 
problem for this case with respect to the remaining ones. In 0 4, we shall therefore 
start with this example. Then we shall consider in 0 5 the case where d = v +  1 and 
n = 2v, corresponding to equation (2.4). All the difficulties of the general case already 
being present, it will be sufficient to illustrate the general solution of the state labelling 
problem. 

Let us now determine the number of missing labels distinguishing the equivalent 
irreps of O( n) [U( d ) ]  as contained in a given irrep of U( n) [Sp(2d, R ) ]  when d > v. 
As seen in equations (2.1) and (2.2), neither the irrep of U(n)  nor that of Sp(2d, R )  
are the most general irreps we can have for such groups. This renders Racah’s formula 
(1965) for the number of missing labels useless, hence we have to count them by using 
appropriate chains of subgroups. 

To characterise the row of the U(n)  irrep [h,  . . . hd] ,  we could use the canonical 
chain of subgroups (Gel’fand and Tseitlin 1950) 

U(n - 1) 3 U(n-2)  3 .  . .I U(d) 3 U(d-  1) 3 . .  . 3 U(2) 3 U(1). 
d d d d - 1  2 1 (2.5) 

The number of labels specifying the irreps is listed below each corresponding group. 
Altogether they would supply dn -fd(d + 1) quantum numbers. However, instead of 
chain (2.5), we actually make use of the O( n) group and its canonical chain of subgroups 
(Gel’fand and Tseitlin 1950), i.e., 

0 ( 2 ~ + 1 ) 3 0 ( 2 ~ ) 3 0 ( 2 ~ - 1 ) 3 0 ( 2 ~ - 2 ) 3 . .  . 3 0 ( 3 ) 3 0 ( 2 )  
U V v - 1  v - 1  1 1 

w h e n n = 2 v + l ,  ( 2 . 6 ~ )  

when n = 2v. 

and 

O( 2 V) 3 O( 2 v - 1) 3 O( 2 v - 2) 3 . . .3 O( 3) 3 O( 2) (2.6b) 
V U - 1  v - 1  1 1 

They supply respectively v( v + 1) and v 2  quantum numbers. For d = v + a, where a 
is any positive integer, the number of missing labels is therefore equal to 

fd(d- 1) - a ( a  - 1) w h e n n = 2 v + l ,  
and 

( 2 . 7 ~ )  

when n = 2v. (2.7b) 

v, the number of missing labels is $d(d - l ) ,  irrespective 
of the difference v - d. When going from d S v to d > U, it therefore decreases, except 

I d ( d -  1 1 )  - a2  

Let us recall that for d 
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for the case d = v +  1, n = 2v + 1, where it remains equal to i d ( d  - 1). This property 
must be compared to the presence or the absence of negative terms in Littlewood's 
modified branching rule. 

3. Highest weight states of equivalent O(n) irreps belonging to a given U(n) irrep 

In this section, we wish to address ourselves to the construction of the HWS P of 
equivalent O ( n )  irreps ( A , .  . . A,), belonging to a given U(n) irrep [h ,  . . . hd]. As a 
consequence of the complementarity relationship mentioned in P 2, they are simul- 
taneously the HWS of equivalent U(d) irreps [h ,  . . . hd], contained in the Sp(2d, R )  
irrep ( ( in )"" ,  A, + i n ,  . . . , A ,  + $ n ) .  We shall specifically be more concerned with the 
changes to be made in the construction detailed in I when d becomes larger than v. 

In the Bargmann representation (1961), the HWS P is represented by a polynomial 
P(z,,) in dn complex variables zlS, i = 1 , .  . . , d, s = 1 , .  . , n, 

(3.1) 

A,+ n / 2 , .  . . , h i  + n/2) 
(rs)[hl - . hdl 

[hi  . . . hd] 

max max 

= ( z I S / [ h l . .  . hdlmax; ( A , . .  . A,)max; (r')), 
where (rs) denotes the whole set of missing labels. Each P ( z l s )  is a solution of the 
following system of equations 

HOP = h,P, AEP=O, P < a, (3.2a, b )  

D f P  = 0 ,  p < a, EZP = 0 (only when n = 2 v +  l ) ,  (3.2c, d )  

C,,P = h,P, Cl? = 0, i < j ,  ( 3 . 2 ~  f) 
where a, p = 1 , .  . . , v, and i , j =  1 , .  . . , d. The operators Ha, and A f ( p  < a ) ,  D t ( p  < 
a ) ,  E," (only when n = 2v+  1) are respectively the weight and raising generators of 
O(n) ,  while the operators C,, and C,,( i < j )  play the same role for U(d). Their definition 
in terms of z,, and a/az,, was given in I and will not be repeated here. 

We start with the replacement of the dn variables z,, by the variables a,,, b,,, and 
c, (the latter only for n = 2 v +  l ) ,  i = 1 , .  . . , d, a = 1 , .  . . , v, characterised by a definite 
weight with respect to O(n) ,  and defined in equation (13.1). In terms of these new 
variables, the weight and raising generators of O(n)  can be written as 

while the U(d) generators become 
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Proceeding as in I, we next try to introduce the i d ( d + l )  O ( n )  scalars wij = wji ,  
defined in equation (I3.2), by eliminating the same number of bi,-type variables. 
However it turns out that when d becomes larger than v, with the exception of d = v +  1 
and n = 2 v + 1, such a transformation is no more possible, because the resulting set of 
variables would not be functionally independent. To obtain a set of independent 
variables when d = v + a and a is any positive integer, we have to eliminate $a( a - 1) 
o r $ a ( a + l )  a,,-typevariables, but o n l y ~ [ d ( d + l ) - a ( a - l ) ] o r $ [ d ( d + l ) - a ( a + l ) ]  
bia-type variables, according as n = 2v + 1 or n = 2v. The new variables are defined by 

uiu = aim 
0. = b. 

= cj, 

c r = l ,  . . . ,  min(v,n-i), 

p = 1, . . . , v - i, 
p = v- i +  1 (only when n = 2v+ l ) ,  

IP JP’ 

(3.5) 
Y 

wij = C (aiabja + ajabia) when n = 2v, 
cl=l 

Y 

= (aiabja + ajabia) + cicj when n = 2 v + l ,  

where i and j run from 1 to d, appreciating that in vip, i does not go beyond v - 1 or 
v whenever n = 2 v  or n = 2 v + l .  

The polynomials P( tis) become P (  uim uip, wij) functions, which may be non-analytic 
since the change of variables (3.5) is not linear. For the time being let us restrict 
ourselves to analytic functions. Equations ( 3 . 2 6 )  and (3.2d) can be solved in the same 
way as in I and impose that P( uio, vi,, wij )  depends only upon the uio and wij variables. 
On the contrary, equations (3.2a, c, e, f) are substantially modified with respect to I. 
The most dramatic change occurs in the U( d)  generators, where a separation, similar 
to equation (14.1), into two terms depending only upon the uiu or the wij variables is 
no more valid, except for d =  v + l ,  n = 2 v + l .  

We therefore conclude that the procedure used in I to construct P(u i ,  wi,) is not 
directly applicable here except for the case d = v + 1, n = 2 v + 1, which is going to be 
reviewed in the next section. The construction of P ( u i ,  wi j )  is postponed until 0 5 
when the ai, variables are not all functionally independent of the wij ones. 

a = ,  

4. Solution of the state labelling problem for (v+l ) -row irreps of U(2v+l)  

When d = v + 1 and n = 2 v + 1, no aia-type variable has to be eliminated, and equation 
(3.5) reduces to equation (13.3). The conclusions of I may therefore be extended to 
the present case. 

Let us consider the whole set of HWS P(u i , ,  wi j )  of equivalent O(2v+1)  [or 
SO(2v+l)]  irreps ( A , .  . . A ” ) ,  belonging to the U ( 2 v + l )  [or SU(2v+1)]  irrep 
[h ,  . . . la,+,]. According to I, those members of the set which are analytic functions 
in uia and wij can be written as 

(uia, Wi j l [h l . .  . h,+l]max; ( A , .  . . A V )  max; (r‘)) 
= C ( [Al  . . . L l ( A ) ,  [ h i .  . . h”,1l(hS))l[hl . . . hv+,I max; ( Y ‘ ) )  

( h ’ ) ( A )  

X ( u i a I [ A l . .  . &](A) ;  ( A , .  . . A,) max)(wijl[h;.. . h”,,](h‘); (0) max). 
(4.1) 
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In equation (4.1), h i , .  . . , h”,,, are some even integers, (h’) and ( A )  are Gel’fand 
patterns (Gel’fand and Tseitlin 1950), ( y s )  is an operator pattern (Biedenharn et a1 
1967), (r’) is defined by 

(4.2) 

and the first factor on the right-hand side is a shorthand notation for a U( Y + 1) Wigner 
coefficient 

( [ A , .  . . A,I(A),[hi..  . hC+,l(h’))l[h,.. . h,+llmax; ( Y ’ ) )  

(4.3) 

(r’) provides the fd( d - 1) missing labels necessary to completely specify the HWS. 
Since hi , .  . . , h”,, are even, only HWS of irreps ( A ,  . . . A,) such that hl +. . . + hut ,  - 

( A ,  + . . . + A,) is even can be obtained in this way, and the number of such independent 
states is equal to 

Therefore they only account for the first term of Littlewood’s modified branching rule, 
given in equation (2.3). The remaining HWS, corresponding to the second term of 
equation (2.3) for which hl +. . . + h,+, - ( A ,  +. . . +A, )  is odd, must be non-analytic 
functions in uia and wij. 

When considering increasing values of hl,  . . . , h,+,, a non-analytic HWS appears 
for the first time for the irreps [I”+’] of U ( 2 v + l )  and (1’) of 0 ( 2 v + l )  with a 
multiplicity one corresponding to h f  =.  . . = h”,, =O.  In terms of the variables a,,, 
bi,, and ci, it is however a polynomial whose explicit form can be easily written down 
by solving equations (3.2), (3.3), and (3.4) for hl  =. . . = h,+, = A ,  =. . . =A,,  = 1.  It is 
given by 

were u ~ . . . ~ - ~ ~ + ~ . . . ~ + ~ , ~ . . . ~  is the determinant of the variables ai,, where j =  
1 , .  . . , i- 1, i+ 1 , .  . . , v +  1, and a = 1,. . . , Y. One can easily check that the HWS (4.5) 
becomes a non-analytic function once written in terms of the variables ui,, wij. This 
property results from the following identity 

[ + I  1 (-1)’ ‘U1 .,. i - l i + l  ,,,’+ 1 , l  ..,~u l . . . , - l j + l . . , u + l , l . . . ~ ~ i j  
i j  

(4.6) 

which is proved by applying equation (3.5) to the left-hand side and using some 
determinant standard properties. 

We now assert that all the HWS, corresponding to irreps [h ,  . . . h,,,] and ( A ,  . . . A,) 
for which h, +. . . + h,+, - ( A ,  +. . . + A , )  is odd, can be built from the HWS of the irreps 
[Iv+’] and (l”), given in equation ( 4 . 3 ,  and some HWS which are analytic functions 
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in ui, and wij. More explicitly they can be written as 

(ai,, bia, ci 1 [ 1 ” + ‘ I  max; (1 ”) max) 

X (uia, wij I [ hl - 1, . . . , h,+l - 11 max; ( A l -  1, . . . , A V  - 1) max; (r’)), 
(4.7) 

where the latter factor is given by an equation similar to equation (4.1), and (r’) 
retains the same meaning as before. 

To prove this assertion, we note that (i) the function defined in equation (4.7) 
is a solution of equation (3.2); (ii) since ( h l - l ) + .  . . + ( h u + l ) - [ ( A l - l ) +  
. . . + ( A y -  l)] is even, the second factor in equation (4.7) is an analytic function 
in uia, wij,  whose explicit form can be obtained from equation (4.1); (iii) the number 
of independent functions, obtained by considering all possible (r’) in equation (4.7), 
is equal to 

and accounts for the second term of the modified branching rule, given in equation 
(2.3), thus completing the proof. 

The state labelling problem for the ( v +  1)-row irreps of U(2v+ l ) ,  when reduced 
with respect to 0 ( 2 v +  l), is therefore solved. We shall turn now to the more difficult 
problem of the ( v  + 1)-row irreps of U(2v). 

5. Solution of the state labelling problem for (v+l)-row irreps of U(2v) 

When d = v + 1 and n = 2v, by inverting equation (3.5) one of the ai, variables, namely 
can be expressed as a function of uim uip, and wij (it will turn out that it only 

depends upon uiu and wij ) .  For such a purpose, let us eliminate the bia variables 
between the set of ;( v +  1)( v+2) equations 

(5.1) 

This is accomplished by multiplying both sides of equation (5.1) by ( - l ) i + i ~  
~ ~ . , , i - ~ i + ~ , , . ~ + ~ , ~ , , , ~ u ~ . , , j - ~ j + ~ , , , ~ + ~ , ~ , , , ~ ,  and summing over i and i from 1 to v + l .  The 
result can be written as 

( 5 . 2 ~ )  1+1 C (-1)’ ‘a1 ... i - l i + l  ... u + l , l  ... ual ... j - l j + l  ... u + l , l  ... uwij = 0, 
i j  

because the sum over a on the right-hand side contains a factor 

(5.3) 

which is equal to zero for any a = 1, . . . , v. When replacing ai, by uiu for i, U = 1, . . I , v, 
and i = v +  1, U = 1,. . . , v - 1, in equation (5.2a), we obtain a second degree equation 
for Q ~ + ~ , ” ,  whose coefficients are polynomials in uic and wij.  Its solution leads to the 
sought for expression of av+ l ,u  in terms of uio and wij.  We do not write the latter 
here since its explicit form will not be needed. Instead we shall be interested in the 
interpretation of equation ( 5 . 2 4 ,  with whose discussion we shall now proceed. 
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Should n be greater than or equal to 2d = 2 v + 2 ,  instead of being equal to 2 v  as 
it is here, we should remain within the case treated in I. Then all the a, variables, 
including would be independent of the wjj variables and equal to uia. In this 
case, the left-hand side of equation ( 5 . 2 ~ )  would become 

( 5 . 4 )  ‘ + I  ( - 1  ’ ‘U 1 . . . i -  1 i + l  ... v +  1.1.. . v ~1 ... j -  1 j + l  ... u+ 1.1. .. u wq, 
C 

and would of course be different from zero. By introducing equation ( 5 . 4 )  into equation 
( 3 . 2 ) ,  it is straightforward to show that this polynomial in uio and wij would just be 
the HWS of the irrep ( 2 ” )  of O ( n )  belonging to the irrep [2”+’]  of U(n), i.e., 
(ui,, wij1[2””] max; ( 2 ” )  max), where no extra label (r’) is needed. Returning now to 
the case n = 2 4  i.e., replacing ui, by ai,, we conclude that equation ( 5 . 2 ~ )  is equivalent 
to the condition 

( 5 . 2 b )  

The latter agrees with Littlewood’s modified branching rule, given in equation ( 2 . 4 ) ,  
showing that the irrep ( 2 ” )  is not contained in [2”+’ ]  when n = 2v. 

The equivalence of equations ( 5 . 2 ~ )  and ( 5 . 2 b )  suggests a convenient procedure 
to take into account the functional dependence of a, and wij when n = 2 v :  starting 
with the case n 3 2d = 2 v  + 2 ,  use the results of I to write the HWS in a form similar 
to equation ( 4 . 1 ) ,  with ui, replaced by ai,; then pass to the case n = 2 v  by directly 
imposing condition ( 5 . 2 b )  on the HWS. 

To implement this programme, we note that when n 3 2d = 2 v +  2 ,  h,+, 3 2 ,  and 
A V  2 2 ,  the products 

(a,,, w i j / [ 2 ” + ’ ]  max; ( 2 ” )  max) 

(aia, wij1[2”+’] max; ( 2 ” )  max) =o. 

X (ai,, wjj l [hl  - 2 ,  . . . , h,+] - 21 max; ( A ,  - 2 , .  . . , A, - 2 )  max; (r’)) 
( 5 . 5 2 )  

are of highest weight, respectively equal to h l ,  . . . , h,+,,  and A I , .  . . , A, with respect 
to U( v + 1 )  and O( n ) .  They must therefore be linear combinations of the HWS of the 
equivalent O ( n )  irreps ( A ,  . . . A,) belonging to the irrep [ h ,  . . . h,+,] of U(n), 

A:F?)([h, . . . h,,+,](A, . . . Av)) (ujm,  wi,l[hl . . . h,,,]max; ( A ,  . . . A,) max; (F”)). 
(r”) 

( 5 . 5 b )  

In the appendix, we show that the numerical coefficients A,,$,)([h,  . . . hv+l ] (A l  . . . A,)) 
of these linear combinations are just recoupling coefficients of four U( v + 1 )  irreps, 
which we represent by a notation similar to that commonly used for SU(2) (Edmonds 
1957): 

(rv 

= ( ( [ A , - 2 , .  . . , A V - 2 ] [ 2 ” ] ) [ A 1 . .  . A , ] ,  ( [ h i . .  . hL+, ] [2 ] ) [h i ’ .  . . hz+ l ] ,  

 hi . . . hv+iI l ( [Ai -2 , .  . . >  Au-21[hf . . . hC+,]) 

(r”)[h, - 2 , .  . . 7 h,+1-21, ([2”1[21)[2”+’1, [h,  . . . h”+lI). (5 .6 )  

In equation (5 .6) ,  (I+’) and (I”’) are respectively equal to the right-hand side of equation 
(4 .2 )  and to a similar expression containing primed symbols. 

Therefore we are, at least in principle, able to write explicitly the relations obtained 
by equating equations ( 5 . 5 ~ )  and (5 .5b ) .  For given irreps [ h ,  . . . h,,+,] and ( A ,  . . . A V )  
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such that h,+l and A,, 3 2, they are all independent of one another, and their number, 
equal to the number of operator patterns (r'), is the multiplicity of ( A l  - 2, . . . , AV - 2 )  
in [ hl - 2, . . . , h,+l - 21, or in accordance with Littlewood's branching rule 

gLA1-2  ,..., A\,-2][h;  ... h : , , ] [ h l - 2  ,..., h.+,-2]  = g[Ai ... A.2l[h;. . .h:~~I[hi. .h, , l l '  (5 .7)  
h ;  ... h; , ,  h ;  ... h i + ,  

When we pass to the n = 2v case and take equation (5 .2b)  into account, it is clear 
that the linear combinations (5.5b) must be equal to zero since the expressions ( 5 . 5 ~ )  
vanish. Consequently, when h,+l and A, b 2, the HWS (4.1) are no longer independent 
but related by the set of equations 

1 A:f: \ ( [h~ . .  . hv+1I(A1 . . . A,)) 
(rr') 

( 5 . 8 )  

whose number is given by equation (5.7). 
A solution of the U(2v) 2 O(2v) state labelling problem, for the irreps Ehl . . . h,+,] 

and ( A l  . . . A V )  with h,+l and A, b 2, may therefore be obtained in the following way. 
Among the HWS (4.1), we only retain a set of independent states by taking equation 
(5.8) into account. The number of such independent states is the difference between 
the numbers defined in equations (4.4) and ( 5 . 7 ) ,  and agrees with the two last terms 
of Littlewood's modified branching rule (2.4). The patterns (rs) can still be used to 
specify the independent HWS. However they provide us with a redundant characterisa- 
tion, since they contain id(d - 1) independent labels and, according to equation (2 .7b) ,  
we only need i d (  d - 1) - 1 additional quantum numbers. 

Let us now turn to the cases where A, b 2 and h,+l < 2, or A, < 2 and h,+l is 
arbitrary. It is clear from equation (5.2b) that they are only slightly affected by the 
functional dependence of the ai, and wij variables. The states (4.1), with uia replaced 
by ai,, remain independent HWS. The functional dependence of the ai, and wij variables 
only appears when we write the states in terms of ui, and wij because u , , + ~ , ~  is a 
complicated function of these variables. In doing so, the polynomials in ai,, wij are 
converted into non-analytic functions in uiw, wij. Such HWS account for the first, the 
second, and the fourth terms of equation (2.4), as well as the fifth one whenever h,+, < 2. 

For A,-] 3 1, A, = 0, and h,+l 3 1, it remains for the HWS corresponding to the third 
term of equation (2.4) to be constructed. They are non-analytic functions in ai, and 
wij, whose explicit form can be found by an analysis similar to that used in 0 4  to 
construct the states (4.7). They can be written as 

(ai,, b i m  1 [I , + I ]  max; (1 '-') max) 

where (5 .9)  

x(a,,, wijl[hl.. . hUsl]max; ( A ~ .  . . A , )  max; (rS'))=o, 

X(& wij([h1-1,. . . , h,+l-l]max; (AI-1,. . . , A u - l - l )  max; (rs)), 

(ai,, bi, 1[1'"'] max; (I"-') max) =E (-1) u + l ~ i ~ ~ , , , i - ~ i + ~ . , , u + ~ , ~ , . . u ~ i ~ ~  

and 

(5.10) 
i 

r + l + k + f + l  [(-I)' ' U1 ... i - l i+l  ... j-lj+l ... v + l . l  ... u u l  ... k - l k + l  ... f-lf+l ... "+l,l ... " w i j , k ~ l  
i c i  
k c'l 

... i - l i + l  ... u + ~ . l . , . u ~ i u  I* (5.11) 
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The second factor in equation (5.9) is a polynomial in aia, wij of type (4.1). Since 
A, = 0, it does not depend upon and is therefore also a polynomial in uirr and 
wij.  The number of independent functions obtained by considering all possible (I”) 
in equation (5.9) is equal to 

(5.12) 

and accounts for the third term of equation (2.4). 

(v+ l ) - row irreps of U(2v), when reduced with respect to O ( 2 v ) .  
We have therefore completed the solution of the state labelling problem for 

6. Conclusion 

In the two previous sections, we solved in detail the state labelling problem respectively 
for ( v +  1)-row irreps of U ( 2 v + l )  and U(2v). In this concluding section, we would 
like to outline the procedure for generalising our results to d-row irreps of U(n), 
when d = v + a and a is some integer larger than one. 

As mentioned in 0 2, Newell’s modification rules introduce two types of additional 
terms into Littlewood’s branching rule, namely positive and negative ones. We shall 
discuss them separately. 

The existence of negative terms in Littlewood’s modified branching rule is related 
to the functional dependence of the aia and wij variables, and the drop in the number 
of missing labels that both take place when d exceeds v (or v + l  for n = 2 v + 1 ) .  
Whenever n is even or odd, i a ( a  + 1) or &a(a - 1) aia-type variables can be written 
in terms of the wi, variables and the remaining ai, ones. The corresponding $ a ( a  + 1) 
or $a( a - 1) equations express the fact that some HWS corresponding to low values of 
hl ,  . . . , hd, and A I , .  . . , A,, which were present for n 2 2d,  disappear for n < 2d  and 
must therefore be cancelled. As a consequence, some of the HWS constructed in I are 
no more independent. The relations they satisfy can be deduced from the above 
mentioned equations by a procedure similar to that devised in the previous section, 
and they involve appropriate recoupling coefficients of U(d). Their number is equal 
to the absolute value of the negative terms in Littlewood’s modified branching rule. 
The independent HWS that are left after eliminating the dependent ones with the help 
of such relations, can still be characterised by (r’) patterns, but the latter provides us 
with too many a2 or a(a  - 1) labels whenever n is even or odd. 

The existence of additional positive terms in Littlewood’s modified branching rule 
means that some HWS of O ( n )  irreps are non-analytic functions in a, and wij. 
Fortunately this non-analyticity arises from some HWS corresponding to low values of 
h l ,  . . . , hd, and A I , .  . . , A, The latter can be easily constructed as polynomials in aia, 
bi,, and ci. All the non-analytic HWS can then be obtained by combining them with 
analytic ones. 

From the above discussion, we conclude that the solution of the state labelling 
problem for d-row irreps of U( n), when reduced with respect to O( n), formulated in 
I for d S [in], can in principle be extended to all d values (although when d is large 
with respect to [ i n ] ,  it would become extremely complicated). For d > [$n], it is directly 
connected with Littlewood’s modified branching rule. 
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The solution proposed in both papers (I and present) will of course remain formal 
in most cases, because the numerical values of the necessary Wigner and recoupling 
coefficients of U( d )  are unknown. In the remaining cases however, detailed expressions 
of the HWS can be written down as will be shown in a forthcoming paper of the present 
series, due to deal with the SU(3) = SO(3) group chain. 
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Appendix. Proof of equation (5.6) 

In this appendix, we would like to show that the coefficients AIF:’)([h, . . . h,+1] 
( A , .  . . A ” ) ) ,  appearing on the right-hand side of the following equation 

(a,,, w i j l [ 2 y + 1 ]  max; ( 2 ” )  max) 

x ( a i u ,  w i j l [ h , - 2 , .  . . , h,+l-2]max; ( A l - 2 , .  . . , A , - 2 )  max; (rs)) 

(rs 

X(ai,, w i j l [ h l . .  . h,+,] max; ( A , .  . . A,) max; (P)) 

= E, A:;?)([h,.  . . h v + , ] ( A 1 . .  . A,)) 

(AI )  
are equal to the recoupling coefficients of U(v+  l),  in accordance with equation (5.6). 

For such purposes, let us expand each of the HWS in equation (Al)  into products 
of HWS depending only upon aiQ or wij by applying equation (4.1). Equation (Al)  
becomes 

C ( ( [ 2 ” 1 ( ~ 0 ) ,  [21(h~)1[2”+’1  max; b i n ) )  
( h : ) ( A o ) ( h s ) ( A )  

x ( L A i - 2 , .  . . , A v - 2 ] ( A ) ,  [ h i . .  . h i + l ] ( h s )  

X I[h - 2 , .  . . , hv+l-  21 max; (Y’)) 
x ( a i ,  1[2”1(A0); ( 2 ” )  max) 

x ( a i Q I [ A l - 2 , .  . .  , A v - 2 ] ( A ) ; ( A l - 2 , .  . .  ,Av-2)max) 

x(wi j I [2I (h i ) ;  (0)  max)(wijI[hf.. . h:+1](hs);  ( 0 )  max)) 
I- 

X (([A, . . . A v ] ( A ‘ ) ,  [hi’ . . h”:iI(h”)I[hi . . . k + i I  max; (Y”)) 
( h s ’ ) ( A ’ )  

x ( a i , l [ A 1 . .  . A v ] ( A ’ ) ;  ( A , .  . . A V )  max) 

x ( w i j l [ h i ’ .  . . h:’+l ] (hs’ ) ;  (0)  max)) . (A21 I 
On the left-hand side of equation (A2), the product of functions in a,  is of highest 

weight, equal to A , , .  . . , A n  with respect to O ( n ) .  It can therefore be expanded in 
terms of HWS of equivalent irreps ( A l . .  . A,) of O(n). Since these HWS only depend 
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upon the ai, variables, they are also characterised by the irrep [ A l  . . . A,] of U( v +  1). 
By using appropriate U( Y + 1) Wigner coefficients, they will correspond to a definite 
Gel’fand pattern ( A ‘ ) .  We therefore obtain 

(aia~[2u](Ao);(2Y!max)(ai,~[A1-2,. . . , A,,-2](A);(Al-2, . . .  ,Au-2)max) 

x(aial[Al . .  . Av](A’); ( A ,  . . . A,)max)) (A3) 

The same procedure applied to the product of functions in wij in equation (A2) 
leads to the following relation 

(wijl[2](h;); (0 )  max)(wij)[hf.. . h”,l l(hs);  (0) max) 

= e ,  e, ([hi * hC+, l (hs) , [21(~; ) l [~f ’ .  . * h”,’lI(hS”); ( 7 ; ) )  
h y  , . . h ; + ,  ( h ’ )  

x(wijl[h;’. . . h”,’,](h“’); (0) max), (‘44) 

where we have an additional summation over the U( v +  1) irrep, and 

= O  
for j = 1, . . . , v. 

if i = 2 , .  . . , j ,  

When introducing equations (A3) and (A4) into the left-hand side of equation 
(A2), we obtain on both sides a linear combination of the products 

(uza / [ A l  . . . Av](A’); ( A ,  . . . A,) max)(w,,I[hf’ . . . h”,‘,](hS’); (0) max), 

which are linearly independent. By equating their coefficients and using the orthogonal- 
ity relations of Wigner coefficients to transfer to the left-hand side the Wigner coefficient 
appearing on the right-hand one, we obtain 

A:;?)([h,.  . . h u + l ] ( A l . .  . A,) )  

c {([A1-2,. . ’ , A.-21(A),[2”I(A,) - - 
( h i ) ( A o ) ( h s ) ( A ) ( h s  ) ( A ’ )  

xl[Al . .  . Avl(A’); b“) 

x([Al . . L K A ’ ) ,  [hi’ . . . h”,’, l(h”‘) I[hl . . . hV+J max; ( 7 ” ) )  

X([hS.. . ~ ~ + 1 1 ( ~ ” ) , [ 2 I ( h ~ ) l [ ~ ~ ’ .  . h:+ll(hs’); ( 7 : ) )  

X(EA1-2,. . . , Au-2I(A),[hi, a * .  9 h”,lI(hs) 

~ l [ h , - 2 , .  . .  ,hY+l-2]max;(ys))  

x([2”1(~0),  [21(h6) 1[2””I max; (min))). (A@ 

On the right-hand side of equation (A6), we finally introduce the Wigner coefficient 
( [ h ,  - 2 , .  . . , h,+l -21 max, [,”+’I maxJ[h, . . . max; (max)), which is equal to one. 
The result is the expansion in Wigner coefficients terms of the recoupling coefficient, 
contained in the right-hand side of equation (5.6). In the latter all those operator 
patterns which do not contain any essential information are dropped. 
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